Manoraa

Manoraa Project

The acronym “Manoraa” is a Thai word used for calling a dancing lady in ancient Thai Musicals. The server Mapping Analogous Nuclei onto Residue And Affinity (MANORAA) provides 3D visualization of fragment–residue interaction between the chemicals and multiple protein binding partners in the Protein Data Bank. In addition to providing the interaction type and the amount of bonds that the fragment made which shows to affect binding affinity, it also shows linkage to Single Nucleotide Polymorphisms and biochemical pathway analysis. The relationship between pharmaceutically important fragments to all biomolecular binding partners in the PDB are analysed by CREDO. The users can start from a chemical fragment or SMILES (via ChEMBL and Cactvs) and progress through UniProt and Open Targets (http://opentargets.org) to the different KEGG pathways in different organisms and SAMUL’s human SNPs that affect genetic diseases (http://samul.org). The server can open door for a more robust and insightful analysis for the study of species selectivity, off-target inhibition that causes drug side effect, and multi-target drug design.

If you are using MANORAA for your research, please cite our paper:

Tanramluk D, Narupiyakul L, Akavipat R, Gong S, Charoensawan V MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein-ligand fragment interaction, pathways and SNPs. Nucl. Acids Res. 44 (W1): W514-W521.

MANORAA developer team:

  • Duangrudee Tanramluk
  • Lalita Narupiyakul
  • Ruj Akavipat
  • Sungsam Gong
  • Varodom Charoensawan
  • Twitter: @ManoraaProject

References:
1.↵ Böhm H.-J. Protein–Ligand Interactions—From Molecular Recognition to Drug Design. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.
Google Scholar
2.↵ Inhester T., Rarey M. Protein–ligand interaction databases: advanced tools to mine activity data and interactions on a structural level. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:562-575.
CrossRefGoogle Scholar
3.↵ Rose P.W., Prlic A., Bi C., Bluhm W.F., Christie C.H., Dutta S., Green R.K., Goodsell D.S., Westbrook J.D., Woo J., et al. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res. 2015;43:D345-D356.
Abstract/FREE Full Text
4.↵ Hendlich M., Bergner A., Gunther J., Klebe G. Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 2003;326:607-620.
CrossRefMedlineWeb of ScienceGoogle Scholar
5.↵ Velankar S., Alhroub Y., Best C., Caboche S., Conroy M.J., Dana J.M., Fernandez Montecelo M.A., van Ginkel G., Golovin A., Gore S.P., et al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 2011;40:D445-D452.
MedlineGoogle Scholar
6.↵ Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443-W447.
Abstract/FREE Full Text
7.↵ Anand P., Nagarajan D., Mukherjee S., Chandra N. PLIC: protein–ligand interaction clusters. Database 2014:bau029.
Google Scholar
8.↵ Bradley A.R., Wall I.D., von Delft F., Green D.V., Deane C.M., Marsden B.D. WONKA: objective novel complex analysis for ensembles of protein-ligand structures. J. Comput. Aided Mol. Des. 2015;29:963-973.
CrossRefMedlineGoogle Scholar
9.↵ Ito J.-i., Ikeda K., Yamada K., Mizuguchi K., Tomii K. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs. Nucleic Acids Res. 2014;43:D392-D398.
MedlineGoogle Scholar
10.↵ Gallina A.M., Bisignano P., Bergamino M., Bordo D. PLI: a web-based tool for the comparison of protein-ligand interactions observed on PDB structures. Bioinformatics 2013;29:395-397.
Abstract/FREE Full Text
11.↵ Rose P.W., Bi C., Bluhm W.F., Christie C.H., Dimitropoulos D., Dutta S., Green R.K., Goodsell D.S., Prlic A., Quesada M., et al. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 2013;41:D475-D482.
Abstract/FREE Full Text
12.↵ Liu T., Lin Y., Wen X., Jorissen R.N., Gilson M.K. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;35:D198-D201.
Abstract/FREE Full Text
13.↵ Benson M.L., Smith R.D., Khazanov N.A., Dimcheff B., Beaver J., Dresslar P., Nerothin J., Carlson H.A. Binding MOAD, a high-quality protein–ligand database. Nucleic Acids Res. 2008;36:D674-D678.
Abstract/FREE Full Text
14.↵ Hansch C., Silipo C. Quantitative structure-activity relation of reversible dihydrofolate reductase inhibitors. Diaminotriazines. J. Med. Chem. 1974;17:661-667.
CrossRefMedlineGoogle Scholar
15.↵ Kanehisa M., Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27-30.
Abstract/FREE Full Text
16.↵ Schreyer A., Blundell T. CREDO: a protein-ligand interaction database for drug discovery. Chem. Biol. Drug Des. 2009;73:157-167.
CrossRefMedlineWeb of ScienceGoogle Scholar
17.↵ Schreyer A.M., Blundell T.L. CREDO: a structural interactomics database for drug discovery. Database 2013:bat049.
Google Scholar
18.↵ Bento A.P., Gaulton A., Hersey A., Bellis L.J., Chambers J., Davies M., Kruger F.A., Light Y., Mak L., McGlinchey S., et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42:D1083-D1090.
Abstract/FREE Full Text
19.↵ Bateman A.M.M., O’Donovan C., Magrane M., Apweiler R., Alpi E., Antunes R., Arganiska J., Bely B., Bingley M., Bonilla C., et al. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204-D212.
Abstract/FREE Full Text
20.↵ Gong S., Worth C., Cheng T.K., Blundell T. Meet me halfway: when genomics meets structural bioinformatics. J. Cardiovas. Transl. Res. 2011;4:281-303.
CrossRefGoogle Scholar
21.↵ Hanson R.M. Jmol – a paradigm shift in crystallographic visualization. J. Appl. Cryst. 2010;43:1250-1260.
CrossRefWeb of ScienceGoogle Scholar
22.↵ Tanramluk D., Schreyer A., Pitt W.R., Blundell T.L. On the origins of enzyme inhibitor selectivity and promiscuity: a case study of protein kinase binding to staurosporine. Chem. Biol. Drug Des. 2009;74:16-24.
CrossRefMedlineGoogle Scholar
23.↵ Pulkoski-Gross A., Li J., Zheng C., Li Y., Ouyang N., Rigas B., Zucker S., Cao J. Repurposing the antipsychotic trifluoperazine as an antimetastasis agent. Mol. Pharmacol. 2015;87:501-512.
Abstract/FREE Full Text
24.↵ Yeh C.-T., Wu A.T.H., Chang P.M.H., Chen K.-Y., Yang C.-N., Yang S.-C., Ho C.-C., Chen C.-C., Kuo Y.-L., Lee P.-Y., et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am. J. Respir. Crit. Care Med. 2012;186:1180-1188.
CrossRefMedlineWeb of ScienceGoogle Scholar
25.↵ Laskowski R.A., Hutchinson E.G., Michie A.D., Wallace A.C., Jones M.L., Thornton J.M. PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci. 1997;22:488-490.
CrossRefMedlineWeb of ScienceGoogle Scholar
26.↵ Ihlenfeldt W., Takahashi Y., Abe H., Sasaki S. Computation and management of chemical properties in CACTVS: An extensible networked approach toward modularity and compatibility. J. Chem. Inf. Comput. Sci. 1994;34:109-116.
Web of ScienceGoogle Scholar
27.↵ Ihlenfeldt W.D., Voigt J.H., Bienfait B., Oellien F., Nicklaus M.C. Enhanced CACTVS browser of the Open NCI Database. J. Chem. Inf. Comput. Sci. 2002;42:46-57.
CrossRefMedlineWeb of ScienceGoogle Scholar